今昔职教网欢迎您!
今昔职教网

关注微信

联系电话

您当前位置: 首页 > 最新资讯 > 单招问答

极限不存在(极限不存在三种情况)

来源:今昔职教网

时间:2024-11-12

阅读数:

极限不存在(极限不存在三种情况)

极限不存在

极限不存在有三种情况:

1、极限为无穷,很好理解,明显与极限存在定义相违。

2、左右极限不相等,例如分段函数。

3、没有确定的函数值,例如lim(sinx)从0到无穷。

极限存在与否条件:

1、结果若是无穷小,无穷小就用0代入,0也是极限。

2、若是分子的极限是无穷小,分母的极限不是无穷小,答案就是0,整体的极限存在。

3、如果分子的极限不是无穷小,而分母的极限是无穷小,答案不是正无穷大,就是负无穷大,整体的极限不存在。

4、若分子分母各自的极限都是无穷小,那就必须用罗毕达方法确定最后的结果。

求极限基本方法有:

1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入。

2、无穷大根式减去无穷大根式时,分子有理化。

3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。

极限不存在三种情况

极限不存在有三种情况:

1、极限为无穷,很好理解,明显与极限存在定义相违。

2、左右极限不相等,例如分段函数。

3、没有确定的函数值,例如lim(sinx)从0到无穷。

“极限”

是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。

极限∞和不存在的区别

极限为无穷,极限存在,就是指你可以判断出极限的准确值,无论是实数,还是无穷大

极限不存在就是你无法判定

比如lim(x→无穷)sinx,这时候你只能得知sinx是存在界限的【-1,1】,但是无法写出极限

极限不纯在的情况

极限不存在有三种情况:

1、极限为无穷,很好理解,明显与极限存在定义相违。

2、左右极限不相等,例如分段函数。

3、没有确定的函数值,例如lim(sinx)从0到无穷。

极限存在与否的判断

1、结果若是无穷小,无穷小就用0代入,0也是极限。

2、若是分子的极限是无穷小,分母的极限不是无穷小,答案就是0,整体的极限存在。

3、如果分子的极限不是无穷小,而分母的极限是无穷小,答案不是正无穷大,就是负无穷大,整体的极限不存在。

4、若分子分母各自的极限都是无穷小,那就必须用罗毕达方法确定最后的结果。

极限的存在准则

有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。

1、夹逼定理:(1)当x∈U(Xo,r)(这是Xo的去心邻域,有个符号打不出)时,有g(x)≤f(x)≤h(x)成立。

(2)g(x)—Xo=A,h(x)—Xo=A,那么,f(x)极限存在,且等于A。不但能证明极限存在,还可以求极限,主要用放缩法。

2、单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。

在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数,并且要满足极限是趋于同一方向,从而证明或求得函数的极限值。

3、柯西准则

数列收敛的充分必要条件是任给ε0,存在N(ε),使得当nN,mN时,都有|am-an|ε成立。

免责声明:今昔单招网所涉及文字、图片均来自于网络,本平台仅为转载发布,如涉及版权或虚假等问题,请与本站联系,本站审查后,将第一时间删除!

相关新闻

今昔职教网合作热线

周一至周日:9:00-21:00

Q Q:893967426

2013-2021 今昔职教网, All Rights Reserved. | 本网站内容由网络整理发布,如权利人发现存在误传其作品情形,请及时与本站联系。联系邮箱:893967426@qq.com

公司地址:河南省郑州市 | 广告投放:893967426@qq.com(张老师) |合作加盟:893967426@qq.com(张老师)