想到初升高数学考试卷子,大家也许都懂,有人问初三升高中数学试卷,下面和小编一起看看初升高数学考试卷子,希望能够帮到您!
《初中数学竞赛自招资料?》百度网盘资源免费下载
链接:
?pwd=awxw 提取码: awxw ?
初中数学竞赛自招资料|上海自招|竞赛资料|海风讲义|供系统上传|第三批次|第二批次20170525|初中竞赛知识列表.xlsx|中位线及其应用.docx|质数、合数.docx|正弦定理与余弦定理.docx|整数几何.docx|整除.docx|圆的基本性质.docx|有趣的操作问题.docx
你可以买辽宁师大出版社的中考必备
(25分)如图4,等腰ΔABC中,P为底边BC上任意一点,过P作两腰的平行线分别与AB,AC相交于Q,R两点,又P‘是P关于直线RQ的对称点。
求证:(1)ΔP /QB∽ΔP /RC.(2)点P /在ΔABC的外接圆上.
证明:(1) ΔABC是等腰三角形,QP‖AC,RP‖AB.
∠ABC=∠ACB,∠ABC=∠RPC,∠ACB=∠QPB.
∠ABC=∠QPB,∠ACB=∠RPC.
QB=QP,RP=RC.
P与P /关于RQ对称.
QP=QP /,RC=RP /.
QB=QP=QP /,RC=RP=RP /.
点B、P、P /在以点Q为圆心的圆上,
点C、P、P /在以点R为圆心的圆上,
∠P /QB=2∠P /PB=∠P /RC.
等腰ΔP /QB∽等腰ΔP /RC.
(2)连P /A
由等腰ΔP /QB∽等腰ΔP /RC,得∠ABP /=∠ACP /.
点P /,B,C,A四点共圆.
点P / 在ΔABC的外接圆上.
20.(10分)某校七年级全体320名学生在电脑培训前后各参加了一次水平相同的考试,考分都以同一标准划分成“不合格”“合格”“优秀”三个等级.为了了解电脑培训的效果,用抽签方式得到其中32名学生的两次考试考分等级,所绘的统计图如图9所示,试结合图示信息回答下列问题:
(1)这32名学生培训前考分的中位数所在的等级是______,培训后考分的中位数所在的等级是_____;
(2)这32名学生经过培训,考分等级“不合格”的百分比由_____下降到_____;
(3)估计该校整个七年级中,培训后考分等级为“合格”与“优秀”的学生共有______名;
(4)你认为上述估计合理吗?理由是什么?
20.(1)不合格 合格 (2) 75% 25% (3) 240 (4)合理.该样本是随机抽取的,具有代表性.
21.(10分)如图11,已知△ABC内接于⊙O,AE切⊙O于点A,BC‖AE,
(1)△ABC是等腰三角形吗?说明理由;
(2)设AB=10,BC=8,点P是射线AE上的点,若以A、P、B为顶点的三角形与△ABC相似,问这样的点有几个?请求出AP的长.
21.(1)△ABC为等腰三角形.
∵BC‖AE , ∴∠EAB=∠B.
又∵AE为⊙O切线 , ∴∠EAB=∠C.
∴∠B=∠C,即△ABC为等腰三角形.
(2)射线AE上满足条件的点有两个.
①过点B作AC的平行线交AE于P1点,
∴∠ABP1=∠BAC . ∵∠P1AB=∠ABC ,∴△AP1B∽△BAP1 .
又∵AC=AB , ∴△AP1B≌△BAP1. 则AP1=BC=8.
②作∠ABP2=∠EAB, BP1、AE相交于点P2.
∵∠EAB=∠ABC=∠ACB, ∴∠ABP2=∠ACB . ∴△P2AB∽△ACB , .
∴AP2= .
图11 图12
22.(8分)下面给出两个转盘,凭自己的想象,通过猜想与推测设计一个方案:同时转动两个转盘,转盘停止后指针所指区域表示同一事件的概率为 .在图12中画出来.
20.(1)500-(55-50)×10=450(千克),
(55-40)×450=6750(元).
即售价55元时,月销售量为450千克,月利润为6750元.
(2)y=(x-40)〔500-(x-50)×10〕=-10×2+1400x-40000.
(3)依题意得-10×2+1400x-40000=8000, 解得x1=60,x2=80.
当x=60时,月销售量为500-(60-50)×10=400(千克),
月销售成本为40×400=16000(元);
当x=80时,月销售量为500-(80-50)×10=200(千克),
月销售量为40×200=8000(元).
∵80001000016000,而销售成本不超过10000元,
∴销售单价应定为每千克80元.
五、21.(1)△ABC为等腰三角形.
∵BC‖AE , ∴∠EAB=∠B.
又∵AE为⊙O切线 , ∴∠EAB=∠C.
∴∠B=∠C,即△ABC为等腰三角形.
(2)射线AE上满足条件的点有两个.
①过点B作AC的平行线交AE于P1点,
∴∠ABP1=∠BAC . ∵∠P1AB=∠ABC ,∴△AP1B∽△BAP1 .
又∵AC=AB , ∴△AP1B≌△BAP1. 则AP1=BC=8.
②作∠ABP2=∠EAB, BP1、AE相交于点P2.
∵∠EAB=∠ABC=∠ACB, ∴∠ABP2=∠ACB . ∴△P2AB∽△ACB , .
∴AP2= .
八、(本题8分)
如图,P是⊙O直径CB延长线上一点,PA和⊙O相切于点A,若PA=15,PB=5.
(1)求tg∠ABC的值;
(2)作弦AD,使∠BAD =∠P,求AD的长.
解:已知:抛物线y=-x2+(m+2)x+m-1与x轴交于AB两点(点AB分别在原点O两侧),以OA、OB为直径分别作⊙O1,和⊙O2,(1)问:⊙O1和⊙O2能否为等圆?若能,求出半径的长度,若不能,请说明理由.
(2)设抛物线向上平移4个单位后,⊙O1和⊙O1的面积分别为S1、S2,且4S2-16S1=5π,求平移后抛物线的解析式;
(3)若由(2)所得抛物线与y轴交于C点,过 作⊙O1的切线,交y轴于Q点,求△PQC的面积.
解:(1)不能为等圆;
设A、B两点的坐标分别为(x1,O)(x2,O)
x1·x2=-(m-1)0 m1
∴x1+x2=m+20
即x1+x2≠0, ∴A、B两点到原点距离不能相等
即⊙O1和⊙O2的直径不相等
(2)抛物线向上平移4个单位,解析式为
y= -x2+(m+2)x+m+3
令y1=0,x1=-1,x2=m+3
∴⊙O1,⊙O2的半径分别为
∵4S2-16S1=5π
∴?
m1=0,m2=-6
当m=0时,y=-x2+2x+3
当m=-6时,y=-x-4x-3
此时x1x2=30,不合题意,舍去
∴所求抛物线解析式为y=-x2+2x+3
(3)设PQ与⊙O1切于点D,连O1D,则O1D⊥PQ
又
在Rt△PDO1中,
∴∠O1PD=30°
在Rt△POQ中,
∴
∴Q点坐标为
∵C点坐标为(0,3)
当 ∴
当
此题较前面的题难度跨了一大步,考察了学生数形结合,分类讨论、开放性思维等等,大部分学生做出了第一问,不知道抛物线上移4个单位后解析式应该怎样变化,也有的写出了新的解析式,但是不知道利用因式分解来还求得两根,从而利用已知条件求出m的值,总的得分率不高,说明学生在综合思维训练,知识的灵活运用方向还需加强训练.
一.选择题;
1.A 2.D 3.D 4.A 5.D 6.A 7.A 8.C 9.B 10.D
11.B 12.B 13.C 14.D 15.C
十五道选择题中,除了最后一道题,其余正确率均在95%左右,有的达到了100%,一方面是题目是考察最基本的知识,一般都只包含了一个知识点,另一方面同学们的基础知识大部分掌握得还可以.最后一题的得分率比较低,大约75%-85%之间,条件不是直接给出,需要作辅助线,作出直径,才能用相交弦定理,有的同学没有认真看图就直接用相交弦定理,结果错误,另外算出来的结果并不是所求答案,有的同学慌慌张张一看选项里有这个数,没多加考虑就选了错误结果.
二.填空题:
1.第一、三象限;
2.60 3.4
4.
5.y=10+1.2(x-4) (x≥4)
填空题可以看出学生是否真正掌握了知识而非类似掷硬币的方法选择选项的蒙对得分,是学生知识水平更真实地体现.错的较多的是第(5)小题,基础较差的同学不理解这句话”超过4千米每增加1千米加收1.2元”的含义,这道题实际上与代数第三册第106页B组的第2题的一样,是和实际生活联系的题,并且题目中给出了x的范围,否则车费y与路程x之间应是一个分段函数
三.1.用换元法解方程
解:设 ,则原方程化为
y2+y-12=0
解得 y1=3 y2=4
当y=3时,
两边平方 x2+8x=9
x2+8x-9=0
x1=-9 x2=1
当y=-4时, 此方程无解.
经检验,x1=-9 x2=1 都是原方程的解
∴原方程的解为x1=-9 x2=1
此题得分率为99%,少数同学由于书写不规范或忘写检验而扣分.
2.已知:抛物线过点A(-1,0),B(0,6),对称轴为直线x=1,
(1)求此抛物线的解析式
(2)画出抛物线的草图
(3)观察图象回答,当x取何值时,y0?
解:(1)∵抛物线过点A(-1,0)且对称轴为直线x=1
∴抛物线与x轴另一交点为(3,0)
设抛物线解析式为y=a(x+1)(x-3)
∵抛物线过点B(0,6)
∴6=a(0+1)(0-3)
解得a=-2
∴所求抛物线为y= -2×2+4x+6
(2)列表
图象如下图:
(3)由图象观察
当-1×3时,y0,
此题存在的问题主要是画图的规范性,一般画抛物线图象应该包括以下部分:①列表,②完整的直角坐标系(x轴,y轴,原点,单位长度)③图象 ④其他标注(对称轴方程、顶点坐标、与两坐标轴的交点等),很多学生没有列表,或是没有标出x轴,y轴,或是没有画出对称轴方程,总之,很不完整,这种丢分现象应该杜绝.第(3)问是考察学生数形结合的应用,很多学生对不等式的各种表达和含义含糊不清,不知道什么是”或”,什么是”且”.
四.1.计算:
解:特殊值都没有记熟的学生,应该是非智力因素和非知识结构的问题了.
2.如图,某人要测量河两岸A、B两点的距离,沿AB方向前进到点C,测得BC=20米,又在河岸同一侧取点D,分别测得∠ACD=90°,∠ADC=60°,CD=40米,求河两岸A、B的距离.
解:依题意画图:
在Rt△ACD中,∠C=90°
∠D=60°,BC=20,CD=40
∵
∴AC=CD·tg∠D
=40·tg60°
=
∴AB=AC-BC= -20
答:河两岸AB的距离为( -20)米.
这道题与以往的三角函数应用题相比更灵活了,虽然应用的解直角三角形的知识很简单,但没有给圆,题目要求同学在理解题意的前提下自己画出图来,很多同学因为缺乏实际生活的经验,没有理解”沿着AB方向前进到C点,使BC=20米”的含义,出现了下面几种错误:
实验上在初一的时候,我们就已强调过线段AB的延长线与线段BA的延长线的不同.
五.如图,AD是△ABC的高,AE是△ABC的外接圆圆O的直径.
(1)写成四条成比例的线段(用比例式表示且限于图中注明字母的)
(2)证明你的结论
(1)答:
(2)证明:连BE 图
∵AE为直径,∴∠ABE=90°
又∵AD为△ABC的高,∴∠ADC=90°
∴∠ABE=∠ADC ∠E=∠C
∴Rt△ABE∽Rt△ADC
∴
这道题的扣分原因是没有看清题目要求,或者没有理解题意,写成了,或是 ,题目要求是写出四条图中已标明字母的线段.
六.列方程解应用题:
某商场今年一月份销售额是80万元,二月份销售额下降20%,后改进经营管理,月销售额大幅度上升,四月份销售额已达100万元,求三、四月平均每月销售额增长的百分率是多少?
解:二月份销售额为80×(1-20%)=64万元
设三、四月份平均每月销售额增长率为x,
依题意 64(1+x)2=100
∴
(不合题意,舍去)
答:三、四月份平均每月销售额增长25%.
此题列出方程后有相当一些人解不得正确答案.在已知条件中,稍微作了点变化,不直接给出二月份的销售额需要自己根据条件计算出来.
七.已知:点P在一次函数y=x+3的图象上,且点P的横坐标和纵坐标是关于x的一元二次方程x2-(m-3)x+m=0的两个根.
求:m的值.
解:设点P的坐标为(a、b)
依题意,得
①代入② ④
④代入① ⑤
④⑤代入③,得?
m2-10m=0
解得m1=0,m2=10
当m=0或m=10时? △=[-(m-3)2]-4m0
∴m=0或m=10
有许多学生用了另一种解法:用公式法求出两根代入y=x+3中,求出m,此法较为繁锁,应巧妙应用根系关系求解,另外没有代入△检验也是本题丢分的主要原因.
八.如图,P是⊙O直径CB延长线上的一点,PA和⊙O相切于点A,若PA=15,PB=5
(1)求tg∠ABC的值
(2)作弦AD,使∠BAD=∠P,求AD的长;
解:(1)连结AC
∵PA与⊙O相切于点A
∴∠C=∠PAB
∠CPA=∠APB
∴△PCA∽△PAB
∴
∵BC为直径,∴∠CAB=90°
在Rt△CAB中,tg∠ABC=
(2)由切割线定理,得:PA2=PB·PC
∴
在Rt△CAB中,AB2+AC2=BC2=402 ①
AC=3AB ② 由①②解得 (负值舍去)
作弦AD 使∠BAD=∠P
连结BD ∠BDA=∠BAP
∴△BDA∽△BAP ∴?
∴
此题将圆的切割线定理、方程的思想,相似三角形等知识融和在一起,大部分同学能作出基本图形:连结AC,可得到公边共角的相似三角形,但在计算中发生错误.少数基础较差同学看不出图中各条线段的关系,不会识图,关键是对圆中各个基本定理掌握不清楚.
九.已知:抛物线y=-x2+(m+2)x+m-1与x轴交于AB两点(点AB分别在原点O两侧),以OA、OB为直径分别作⊙O1,和⊙O2,(1)问:⊙O1和⊙O2能否为等圆?若能,求出半径的长度,若不能,请说明理由.
(2)设抛物线向上平移4个单位后,⊙O1和⊙O1的面积分别为S1、S2,且4S2-16S1=5π,求平移后抛物线的解析式;
(3)若由(2)所得抛物线与y轴交于C点,过 作⊙O1的切线,交y轴于Q点,求△PQC的面积.
解:(1)不能为等圆;
设A、B两点的坐标分别为(x1,O)(x2,O)
x1·x2=-(m-1)0 m1
∴x1+x2=m+20
即x1+x2≠0, ∴A、B两点到原点距离不能相等
即⊙O1和⊙O2的直径不相等
(2)抛物线向上平移4个单位,解析式为
y= -x2+(m+2)x+m+3
令y1=0,x1=-1,x2=m+3
∴⊙O1,⊙O2的半径分别为
∵4S2-16S1=5π
∴?
m1=0,m2=-6
当m=0时,y=-x2+2x+3
当m=-6时,y=-x-4x-3
此时x1x2=30,不合题意,舍去
∴所求抛物线解析式为y=-x2+2x+3
23.如图(1),AB是⊙O的直径,直线l切⊙O于B,C、D是l上两点,AC,AD交⊙O
于E、F.试问:AE·AC与AF·AD有怎样的关系?请证明你的结论.
(1) 连BE,BF.
∵CD切⊙O于B,AB为直径,
∴AB⊥CD,BE⊥AC,BF⊥AD.
∴AB2=AE·AC,AB2=AF·AD.
∴AE·AC=AF·AD.
(2)连结BE,BF.
22.如图,AB是⊙O的直径,BC切⊙O于B,弦AD‖OC,OC交⊙O于E.
(1)求证:CD是⊙O的切线;(2)若BC=4,CE=2.求AB和AD的长.
22.
(1)连结OD.先证∠OBC=900
且ΔODC≌ΔOBC,
得∠ODC=∠OBC=900,
∴CD是⊙O的切线.
(2)设⊙O的半径为R,则OC=R+2.
∵OC2=OB2+BC2
∴(R+2)2=R2+42,解得R=3,故AB=6.
连BD,交CO于F.
∵CB、CD切⊙O于B、D,
∴CB=CD,CO平分∠BCD,
∴CO垂直平分BD.
∴CO·DF=DO·DC.
∴5DF=3×4,DF=2.4
∴DB=4.8
由于回答字数在10000字以内,只能是这些了。我相信你把这些题看会,一定得高分。我可花了2个半小时才从北师大附网校摘来。。祝你得高分。。
参考资料:
如有需要,你试着去找找,应该会有点收获。
参考资料:
到网上去搜
2005广东省数学中考试题与答案(非课改区)
一、选择题(本题共5小题、每小题3分,共15分)
1、计算的结果是-1的式子是( )
A、-∣-1∣ B、(-1)0 C、-(-1) D、1-1
2、已知梯形的上底边长是6cm,它的中位线长是8cm,则它的下底边长是( )
A、8cm B、10cm C、12cm D、14cm
3、函数y= 与函数y=x的图象在同一平面直角坐标系内的交点的个数是( )
A、一个 B、二个 C、三个 D、零个
4、如图,⊙O中弧AB的度数为60°,AC是⊙O的直径,那么∠BOC等于( )
A、150° B、130° C 、120° D、60°
5、在△ABC中,∠C=90°,若∠A=2∠B,则cosB等于( )
A、 B、 C、 D、
二、填空题(本题共5小题,每小题4分,共20分)
6、纳米是一种长度单位,常用于度量物质原子的大小,1纳米=10-9米,已知某种植物孢子的直径为45000纳米,用科学记数法表示该孢子的直径为______米。
7、若一组数据8、9、7、8、x、3的平均数是7,则这组数据的众数是___。
8、如图,△ABC中,AC=BC,∠BAC的外角平分线交BC的延长线于点D,若∠ADC= ∠CAD,则∠ABC等于___度。
9、计算: =____。
10、一条抛物线经过原点,请写出它的一个函数解析式_______。
三、解答题(本题5小题,每小题6分,共30分)
11、先分解因式,再求值: ,其中a=-3,b= +4
12、如图,AB‖CD,直线EF分别交AB、CD于点E、F,EG平分∠AEF,∠1=40°,求∠2的度数。
13、解不等式组: ,并求它的整数解的和。
14、设四边形ABCD是边长为1的正方形,以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以第二个正方形的对角线AE为边作第三个正方形AEGH,如此下去???。
(1)记正方形ABCD的边长为 =1,依上述方法所作的正方形的边长依次为 , , ,???, ,求出 , , 的值。
(2)根据以上规律写出第n个正方形的边长 的表达式。
15、初三(1)班40个学生某次数学测验成绩如下:
63,84,91,53,69,81,61,69,91,78,75,81,80,67,76,81,79,94,61,69,
89,70,70,87,81,86,90,88,85,67,71,82,87,75,87,95,53,65,74,77
数学老师按10分的组距分段,算出每个分数段学生成绩出现的频数,填入频数分页表:
(1)请把频数分布表及频数分布直方图补充完整;
(2)请你帮老师统计一下这次数学考试的及格率(60分以上含60分为及格)及优秀率(90分以上含90分为优秀);
(3)请说明哪个分数段的学生最多?哪个分数段的学生最少?
四、解答题(本题共4小题,每小题7分,共28分)
16、如图,已知直线MN和MN外一点,请用尺规作图的方法完成下列作图:
(1)作出以A为圆心与MN相切的圆;
(2)在MN上求一点B,使∠ABM=30°(保留作图痕迹,不要求写作法、证明)
17、李明与王云分别从A、B两地相向而行,若两人同时出发,则经过80分钟两人相遇;若李明出发60分钟后王云再出发,则经过40分钟两人相遇,问李明与王云单独走完AB全程各需多少小时?
18、如图,已知两直线 和 ,求它们与y轴所围成的三角形的面积。
19、已知 , 是方程 的两实数根,不解方程求下列各式的值:
(1) ;(2) 。
五、解答题(本题共3小题,每小题9分,共27分)
20、如图,等腰梯形ABCD中,AD‖BC,M、N分别是AD、BC的中点,E、F分别是BM、CM的中点。
(1)求证:四边形MENF是菱形;
(2)若四边形MENF是正方形,请探索等腰梯形ABCD的高和底边BC的数量关系,并证明你的结论。
21、今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解下列问题:
(1)分别写出当0≤x≤100和x≥100时,y与x的函数关系式;
(2)利用函数关系式,说明电力公司采取的收费标准;
(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?
22、如图,已知半圆O的直径AB=4,将一个三角板的直角顶点固定在圆心O上,当三角板绕着点O转动时,三角板的两条直角边与半圆圆周分别交于C、D两点,连结AD、BC交于点E。(1)求证:△ACE∽△BDE;
(2)求证:BD=DE恒成立;
(3)设BD=x,求△AEC的面积y与x的函数关系式,并写出自变量x的取值范围。
2005年广东省高中阶段学校招生考试
数学试卷(A卷)参考答案及评分建议
一、选择题(每小题3分,共15分)
1.A 2.B 3.B 4.C 5.C
二、填空题(每小题4分,共20分)
6.4.5×10-5 7.7, 8 8.36
9.-2 10.y=ax2+bx (a≠0)
三、解答题(每小题6分,共30分)
11.解:原式=(b2-2b+1)-a2=(b―1)2―a2
=(b-1+a)(b―1―a) …………………3分
=
= …………………6分
12.解:∵EG平分∠AEF,∴∠AEG=∠GEF. …………………1分
∵AB‖CD, ∴∠AEG=∠1=40° …………………3分
∴∠AEF=2∠AEG=80° …………………4分
∴∠2=180°-∠AEF=180°-80°=100°. …………………6分
13.解:原不等式化为: …………………2分
解得 …………………3分
所以原不等式组的解集为 …………………4分
此不等式组的整数解为:-1、0、1、2、3、4. …………………5分
所以,这些整数解的和为9。 …………………6分
14.解:(1)∵四边形ABCD为正方形,
∴AB=BC=CD=DA=1,∠B=90°,
AC= 同理,AE=2,EH= ,
(2)
…………………6分
15.解:
成 绩 段 49.5~59.5 59.5~69.5 69.5~79.5 79.5~89.5 89.5~99.5
频数记录
正
正正 正 正
正
频 数 2 9 10 14 5
频 率 0.050 0.225 0.250 0.350 0.125
说明:(1)完整填空作图给2分。
(2)从图中可以清楚地看出79.5分到89.5分
这个分数段的学生数最多,49.5分与59.5
分这个分数段的学生数最少。 ………4分
(3)及格率 ,优秀率 …6分
四、(每小题7分,共28分)
16.解:(1)能作出圆并有作图痕迹得3分;
(2)能作出∠ABM=30°并有作图痕迹得7分;无作图痕迹扣1分。
17.解:设A、B两地相距s千米, 李明、王云两人的速度分别为x千米/分, y千米/分。
…………………1分
依题意得 …………………3分
解得 …………………4分
所以李明单独走完这段路程所需的时间为 (分钟),王云单独走完这段路程所需的时间为 .
直线 …………………1分
;
在y=2x-1中,令x=0, 得y=―1, 得B (0, ―1). …………………3分
由
, …………………5分
AB=4,点C到AB的距离为 . …6分
∴△ABC的面积 …7分
19.解:(1)∵x1, x2是方程的两实数根,
∴x1+x2=2, x1x2=-2, …………………2分
∴ …………………3分
(2) , …………………4分
∵ (x2-x1)2=(x2+x1)2-4x2x1=12,
∴ …………………6分
∴ …………………7分
[注]:若只求出一个值,扣1分。
五、(每小题9分,共27分)
20.证明:∵ 四边形ABCD为等腰梯形,∴AB=CD,∠A=∠D.
∵ M为AD中点,∴AM=DM. …………………2分∴ △ABM≌△DCM. …………………3分
∴ BM=CM. …………………4分
∵ E、F为MB、CM中点,BE=EM,MF=FC,N为BC的中点
∴ EN=FN=FM=EM,∴四边形ENFM是菱形. …………………6分
(2)连接MN,∵BM=CM,BN=NC ∴MN⊥BC,
∴ MN是梯形ABCD的高. …………………7分
又已知四边形MENF是正方形,
∴ △BMC为直角三角形. …………………8分
又∵N是BC的中点,∴ …………………9分
21.:解(1) …………………3分
(2)用户月用电量在0度到100度之间时,每度电的收费的标准是0.65元;
超过100度时,每度电的收费标准是0.80元。 …………………6分
(3)用户月用电62度时,用户应缴费40.3元,若用户月缴费105元时,该用
户该月用了150度电。 …………………9分
22.解:(1)∵∠ACD与∠ADB都是半圆所对的圆周角,
∴∠ACD=∠ADB=90°,又∵∠AEC=∠DEB(对顶角相等),
所以△ACE∽△BDE …………2分
(2)∵∠DOC=90°,∴∠AOC+∠BOD=90°
∴∠BAD+∠ABC=45° ……4分
∴∠BED=∠BAD+∠ABC=45°. ……5分
又∵∠BDE=90°,
∴△BED是等腰直角三角形,
∴BD=DE. ……6分
(3)∵BD=x,BD=DE
∴ ………7分
∵△ACE∽△BDE,∴△AEC也是等腰直角三角形,
∴ …………………8分
∵△ACE∽△BDE,∴AC=EC,
∴
(本题解答中,若用 来解答,正确的相应给分)
2006年广东省高中阶段学校招生考试
数学试卷
(非实验区用)
题号 一 二 三 四 五 合计
16 17 18 19 20 21 22
得分
说明:1.全卷共8页,考试时间为90分钟,满分120分.
2.答卷前,考生必须将自己的姓名、准考证号、学校按要求填写在密封线左边的空格内.(是否填写右上角的座位号,请按考场要求做)
3.答题可用黑色或蓝色钢笔、圆珠笔按各题要求答在试卷上,但不能用铅笔或红笔.
4.考试结束时,将试卷交回.
一、选择题(本大题共5小题,每小题3分,共15分)在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母写在题目后面的括号内.
1.计算 所得的结果是( )
A. B. C. D.
2.据广东信息网消息,2006年第一季度,全省经济运行呈现平稳增长态势.初步核算,全省完成生产总值约为5206亿元,用科学记数法表示这个数为( )
A. 亿元 B. 亿元
C. 亿元 D. 亿元
3.用换元法解分式方程 时,设 ,原方程可变形为( )
A. B.
C. D.
4.如图,在菱形 中, 与 的大小关系是( )
A. B.
C. D.无法确定
5.如图,已知 的直径与弦 相交于点 , , , ,则 的半径的长是( )
A. B.
C. D.
二、填空题(本大题共5小题,每小题4分,共20分)请把下列各题的正确答案填写在横线上.
6.数据1,2,3,1,2,4中,2出现的频率是 .
7.化简: .
8.函数 中,自变量 的取值范围是 .
9.如图, 是 的弦, 平分 ,若 ,则 .
10.抛物线 与 轴的一个交点为 ,则这个抛物线的顶点坐标是 .
三、解答题(本大题共5小题,每小题6分,共30分)
11.解方程: .
12.先化简,再求值: ,其中 .
13.如图,已知正五边长形 ,求作它的中心 .(用尺规作图,不要求写作法和证明,但要保留作图痕迹)
14.如图,在等腰三角形 中, , 是 边上的中线, 的平分线 ,交 于点 , ,垂足为 .
求证: .
15.已知:关于 的方程 的两个实数根的倒数和为3,求 的值.
四、解答题(本大题共4小题,每小题7分,共28分)
16.如图,已知:点 在同一直线上,且 , , ,请你根据上述条件,判断 与 的大小关系,并给出证明.
17.如图,直线 与双曲线 只有一个交点 ,且与 轴, 轴分别交于 , 两点, 垂直平分 ,垂足为 ,求直线与双曲线的解析式.
18.为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查.其中一个问题是“你平均每天参加体育活动的时间是多少?”,共有4个选项:
A.1.5小时以上 B.1~1.5小时 C.0.5~1小时 D.0.5小时以下
图1、2是调查人员通过随机抽样调查后根据所采集的数据绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:
(1)本次一共调查了多少名学生?
(2)在图1中将选项B的部分补充完整;
(3)若该校共有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0
鲜花纷纷绽笑颜,捷报翩翩最灿烂。绽在心头芬芳绕,合家共同甜蜜笑。金榜题名无限好,不负十年多辛劳。继续扬帆勤钻研,书写明天新诗篇。祝你九年级数学期末考试取得好成绩,期待你的成功!以下是我为大家整理的初三上数学期末试卷,希望你们喜欢。
初三上数学期末试题
一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只
有一项是符合题目要求的.)
1.点(一1,一2)所在的象限为
A.第一象限 B.第二象限 c.第三象限 D.第四象限
2.反比例函数y=kx的图象生经过点(1,-2),则k的值为
A.-1 B.-2 C.1 D.2
3.若y= kx-4的函数值y随x的增大而减小,则k的值可能是下列的
A.-4 B.0 C.1 D.3
4.在平面直角坐标系中,函数y= -x+1的图象经过
A.第一,二,三象眼 B.第二,三,四象限
C.第一,二,四象限 D.第一,三,四象限
5.如图,AB是⊙O的直径,点C在⊙O上,若∠B=50°,则∠A的度数为
A.80° B.60° C.50° D.40°
6.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=
A.1 B.1.5 C.2
7.抛物线y=-3×2-x+4与坐标轴的交点的个数是
A.3 B.2 C.1 D.0
8.在同一平面直角坐标系中,函数y=mx+m与y=-mx (m≠0)的图象可能是
9.如图,点A是反比例函数y=2x(x0)的图象上任意一点,AB//x轴,交反比例函数y=-3x的 图象于点B,以AB为边作?ABCD,其中C、D在x轴上,则S?ABCD为
A. 2 B. 3 C. 4 D. 5
10.如图,在平面直角坐标系中,⊙O的半径为1,则直线y=x一2与⊙O的位置关系是
A.相离 B.相切 C.相交 D.以上三种情况都有可能
11.竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at2+bt,其图象如图 所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是 A.第3秒 B.第3.9秒 C.第4.5秒 D.第6.5秒
12.如图,将抛物线y=(x—1)2的图象位于直线y=4以上的部分向下翻折,得到新的图像,若直线y=-x+m与新图象有四个交点,则m的取值范围为
A.43m /m
第Ⅱ卷(非选择题共84分)
二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在答题卡的横线上.)
13.直线y=kx+b经过点(0,0)和(1,2),则它的解析式为_____________
14.如图,A、B、C是⊙O上的点,若∠AOB=70°,则∠ACB的度数为__________
15.如图,己知点A(O,1),B(O,-1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C.则∠BAC等于____________度.
16.如图,在平面直角坐标系中,抛物线y=12×2经过平移得到抛物线y=12×2-2x,其对称轴与两段抛物线弧所围成的阴影部分的面积为______________
17.如图,已知点A、C在反比例函数y=ax(a0)的图象上,点B、D在反比例函数y=bx(b0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB与CD的距离为5,则a-b的值是________________
18.如图所示,⊙O的面积为1,点P为⊙O上一点,令记号【n,m】表示半径OP从如图所示的位置开始以点O为中心连续旋转n次后,半径OP扫过的面积.旋转的规则为:第1次旋转m度;第2次从第1次停止的位置向相同的方向再次旋转m2度:第3次从第2次停止的位置向相同的方向再次旋转m4度;第4次从第3次停止的位置向相同的方向再次旋转m8度……依此类推.例如【2,90】=38,则【2017, 180】=_______________
三、解答题(本大题共9个小题,共66分.解答应写出文字说明,证明过程或演算步骤.)
19.(本小题满分6分)
(1)计算sin245°+cos30°?tan60°
(2)在直角三角形ABC中,已知∠C=90°,∠A=60°,BC=3,求AC.
20.(本小题满分6分)
如图,⊙O的直径CD=10,AB是⊙O的弦,AB⊥CD,垂足为M, OM∶OC=3∶5.
求AB的长度.
21.(本小题满分6分)
如图,点(3,m)为直线AB上的点.求该点的坐标.
22.(本小题满分7分)
如图,在⊙O中,AB,CD是直径,BE是切线,连结AD,BC,BD.
(1)求证:△ABD≌△CDB;
(2)若∠DBE=37°,求∠ADC的度数.
23.(本小题满分7分)
某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.求当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?
24.(本小题满分8分)
如图所示,某数学活动小组要测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°,若坡角∠FAE=30°,求大树的高度.(结果保留整数,参考数据:sin48°≈0.74,
cos48°≈0.67, tan48°≈l.ll, 3≈1.73)
25.(本小题满分8分)
如图,矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数y=kx(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=12.
(1)求边AB的长;
(2)求反比例函数的解析式和n的值;
(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点D与点F重合,折痕分别与x、y轴正半轴交于H、G,求线段OG的长
26.(本小题满分9分)
如图,抛物线y=33(x2+3x一4)与x轴交于A、B两点,与y轴交于点C.
(1)求点A、点C的坐标,
(2)求点D到AC的距离。
(3)看点P为抛物线上一点,以2为半径作⊙P,当⊙P与直线AC相切时,求点P的横坐标.
27.(本小题满分9分)
(1)如图l,Rt△ABD和Rt△ABC的斜边为AB,直角顶点D、C在AB的同侧,
求证:A、B、C、D四个点在同一个圆上.
(2)如图2,△ABC为锐角三角形,AD⊥BC于点D,CF⊥AB于点F,AD与CF交于点G,连结BG并延长交AC于点E,作点D关于AB的对称点P,连结PF.
求证:点P、F、E三点在一条直线上.
(3)如图3,△ABC中,∠A=30°,AB=AC=2,点D、E、F分别为BC、CA、AB边上任意一点,△DEF的周长有最小值,请你直接写出这个最小值.
下一页分享初三上数学期末试卷答案
我整理了一些中考数学的常考题型,大家一起来看看吧。
线段、角的计算与证明问题 中考的解答题一般是分两到三部分的。第一部分基本上都是一些简单题或者中档题,目的在于考察基础。第二部分往往就是开始拉分的中难题了。对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。
图形位置关系 中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。
我是南雅的、南雅的卷子在长沙的 四大名校来说并不难,算是正常题目。初升高,比较难,至少要5A1B,比本部好考、但比明德,周南 等好考。卷子嘛、给你参考一份。
南雅中学高一入学分班考试试卷(物理)
南雅中学高一新生入学考试试卷
物 理
一、选择题(本大题8小题,每小题2分,共16分。每小题至少有一个选项符合题目要求,不选、错选或多选均不得分,部分选取得1分)
1、下列关于力的说法中,正确的是
A.两个物体不接触,就一定不会发生力的作用 B.人推车时,人也受到车施加的推力
C.用手捏一个易拉罐,易拉罐被捏瘪了,表明力可以使物体发生形变
D.排球运动员扣球使球的运动方向发生了改变,表明力可以改变物体的运动状态
2、教室内9盏日光灯突然熄灭,检查发现保险丝未断,用试电笔检查室内各处电路,氖管都发光,则故障原因可能是
A.日光灯全部烧坏 B.进户零线断路 C.室内线路某处短路 D.进户火线断路
3、有一架歼10战斗机正在空中某一高度匀速飞行,另一架伊尔76空中加油机给其加油,加油后战斗机仍以原来的高度和速度做匀速飞行,则战斗机的
A.动能增加,势能减少,机械能不变 B.动能不变,势能不变,机械能不变
C.动能减少,势能不变,机械能减少 D.动能增加,势能增加,机械能增加
E
R1
R2
R3
R4
V
A
a
b
4、在图示的电路中,R1、R2、R3和R4都为定值电阻.电源的电动势为E,内阻不计,设电流表的读数为I,电压表的读数为U.当滑动触头向图示的a端移动时,正确的说法是
A.I变大,U变小 B.I变大,U不变 C.I变小,U变小 D.I变小,U变小
5、如图所示,甲和乙分别是边长为10cm的正方体的铁块和铝块,甲放在水平地面上,乙悬挂在绳子的自由端。若动滑轮重10N,则铁块对地面的压强为(ρ铁=7.9×103kg/m3、ρ铝=2.7×103kg/m3,g取10N/kg)
A.7.9×103Pa B.3.95×103Pa C.2.5×103Pa D.3.5×103Pa
6、眼睛、照相机、幻灯机这三种凸透镜在调节成像清晰度时,分别采用下述哪种方式
(甲)焦距固定,物距基本固定,主要调节像距;(乙)焦距固定,像距基本固定,主要调节物距;
(丙)物距固定,像距固定,调节焦距。
A.眼睛甲、照相机乙、幻灯机丙 B.眼睛丙、照相机甲、幻灯机乙
C.眼睛乙、照相机丙、幻灯机甲 D.眼睛甲、照相机丙、幻灯机乙
7、中华民族有着悠久的文明历史,我国古代就有人对自然现象进行观察和研究,留下了许多史料记载,下列是有关记载和相应物理本质的解释正确的是
A.“山顶有泉.煮米不成饭”――山顶气压较低,泉水的沸点较高,水不容易沸腾
B.“司南之杓,投之于地,其抵指南”——地球周围存在磁场
C.“湖光映彩霞”——光的反射现象 D.“潭清疑水浅”——光的折射现象
8、关于在大气中水平匀速飞行的民航飞机与沿圆形轨道绕地球运行的人造卫星,下列叙述中正确的是
A.民航飞机上乘客受地球的重力是零
B.人造卫星内的设备受地球重力为零,因此处于失重状态
C.飞机在空中水平匀速航行时不需要耗用燃料提供的动力
D.人造卫星做匀速圆周运动时不需要耗用燃料提供的动力
二、填空题(本大题6小题,每小题3分,共18分)
9、用弹簧测力计拉着重200N的物体在水平桌面上做匀速直线运动,当速度为4m/s时,弹簧测力计的示数为20N,若速度为1m/s时,弹簧测力计的示数为_______N。
10、冷水的温度为t1,热水的温度为t2,现要把冷水和热水混合成温度为t3的温水,若不计热量损失,冷水和热水的质量比应为_____________。
11、如图所示装置,杆的两端A、B离支点O的距离之比OA:OB=1:2。A端接一重为GA的物体,B端连一滑轮,滑轮上挂有另一重为GB的物体。现杠杆保持平衡,若不计滑轮重力,则GA与GB之比应是____________。
12、小明同学为测定酱油的密度,设计了下面的实验数据记录表格,表格中已经记录了最初烧杯和酱油的总质量,图甲显示的是他将烧杯中一部分酱油倒入量筒后,烧杯和剩余酱油的总质量,图乙显示的是从烧杯中倒入量筒内酱油的体积。请根据图中显示的情况,帮助小明完成实验数据表格的填写。
烧杯和酱油的总质量m总(g)
烧杯和剩余酱油的总质量m1(g)
倒出酱油的质量m2(g)
倒出酱油的体积V(cm3)
酱油的密度ρ(g/cm3)
150
100g
1
2
3
4
5
g
50g
5g
mL
10
20
30
40
50
甲
乙
13、在如图所示的装置中,粗细均匀的细玻璃管上端塞有橡皮塞,管内一段水银柱将一部分气体封闭在玻璃管内。已知玻璃管和橡皮塞总重为G,管的横截面积为S,水银柱高为h,水银的密度为ρ,设当时大气压为p0,管内空气重力不计,则整个装置平衡时,弹簧秤的示数应为_________________。
14、如图所示,竖直放置的弯曲管A端开口,B端封闭,密度为ρ的液体将两段空气封闭在管内,管内液面高度差分别为h1、h2和h3,则B端气体的压强为_____________(已
知大气压强为P0)
三、计算题(本题共4小题,共26分)
R
S1
S2
S3
R1
L
A
15、(6分)如图所示,电源电压不变;灯L上标有“6V、3W”字样,R1为一定值电阻,滑动变阻器的最大阻值为R,当开关S1、S2、S3都闭合时,灯L正常发光。此时断开S1时,电流表示数减小了0.2A。(设灯丝电阻不变)求:
(1)灯L的电阻;(2)电源电压;(3)电阻R1的阻值。
16、(6分)电动自行车很受大家喜爱,下表是某种型号电动自行车的相关数据:
电动车的质量
m(kg)
电能转化为机械的效率η
工作电压
U(V)
行驶速度
v(m/s)
骑车人质量为60kg时的平均阻力f(N)
40
75%
36
≤10
20
若某骑车人的质量是6Okg,在10min内连续行驶3km,根据相关信息求:
(1)在这段时间内,电动自行车行驶的平均速度;
(2)该电动自行车的最大有用功率;
(3)电动自行车以最大速度行驶过程中电动机的工作电流。(保留一位小数)
V
C
D
A
B
P
∽
17、(6分)如图所示是一堵墙,中间是木窗户.上部P是一个接在电源上的插座,A、B是固定电线的钉子,正常情况下电线与墙壁是绝缘的,墙壁中不应有电流.由于施工不当破坏了电线的绝缘,A、B处发生了漏电,整个墙壁有了电流,用电压表测得墙脚下部相距1m的C、D两点间有20V的电压.已知总漏电电流为0.5A,墙高为3m,窗宽为4m,请你估算一下墙壁的漏电功率.
n
B
18、(8分)在如图所示的系统中,活塞n、插入活塞孔中的可移动塞栓B和密度为ρ的液体平衡。容器的横截面积为S,孔的横截面积为S0,各滑动表面间的摩擦均忽略不计,液体不能从间隙中出来。问:若在塞栓顶上放一质量为m0的物体,塞栓相对初始位置将下移多少?
关于x的方程x^2+(2a^2+a-根号下2a^2+a+6)x+a=0的两实数根之和互为相反数则a?
根号3x^2-5x-12 – 根号2x^2-11x+15 =x-3
根号下x^2+(y+1)^2=根号10
根号下(3-x)^2+y^2=根号20
已知实数x,y满足关系式1/2(x+y+5)=2√x+1,+ √y-1,求X与Y 的值
X^4*Y^4/X^4+y^4+6X^2*Y^2+4X^3*Y+4XY^3=________________
问题补充:已知x=2/(2+√3-√5),y=2/(2+√3+√5)
x+1-2|x-2||-|x+1|=18问x等于多少?
1、|2x-1|-|x-2|=9
2、|x|+|x+1|-|3-x|=2x+4
3、|2x+3|+|x-1|=|3x+2|
4、x、y同时满足
|y|-y=0
|x-3|+x-3=0
|y-x|+y-x=0
1.方程3(|x|-1)=|x|/5+1的解是什么? 方程|3x-1|=|2x+1|的解是什么? 2.解方程 1||3x-5|+4|=8 2|4x-3|-2=3x+4 (注:“| |”表示绝对值 2.2意思是3x-5的绝对值再加上4,所得结果的绝对值。。。)
1. |2x-1|+|x-2|=|x+1|
2. 求方程|x-3|+|x+2|=5的整数解
x^2-xy-2y=0
y-xy=0
(1)X^2+(Y-3)^2=(X-1)^2+(4-Y)^2
(2)Y=-X^2+2X+3
x^2-2xy+3y^2=9
4x^2-5xy+6y^2=30
小明家离火车站很近,他每天都可以根据车站大楼的钟声起床。车站大楼的钟,每敲响一下延时3 秒,间隔1 秒后再敲第二下。假如从第一下钟声响起,小明就醒了,那么到小明确切判断出已是清晨6 点,前后共经过了几秒钟?
1. 从甲地到乙地有2种走法,从乙地到丙地有4种走法,从甲地不经过乙地到丙地有3种走法,则从甲地到丙地的不同的走法共有 种.
2. 甲、乙、丙3个班各有三好学生3,5,2名,现准备推选两名来自不同班的三好学生去参加校三好学生代表大会,共有 种不同的推选方法.
3. 从甲、乙、丙三名同学中选出两名参加某天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动.有 种不同的选法.
4. 从a、b、c、d这4个字母中,每次取出3个按顺序排成一列,共有 种不同的排法.
5. 若从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,则选派的方案有 种.
6. 有a,b,c,d,e共5个火车站,都有往返车,问车站间共需要准备 种火车票.
7. 某年全国足球甲级联赛有14个队参加,每队都要与其余各队在主、客场分别比赛一场,共进行 场比赛.
8. 由数字1、2、3、4、5、6可以组成 个没有重复数字的正整数.
9. 用0到9这10个数字可以组成 个没有重复数字的三位数.
10. (1)有5本不同的书,从中选出3本送给3位同学每人1本,共有 种不同的选法;
(2)有5种不同的书,要买3本送给3名同学每人1本,共有 种不同的选法.
11. 计划展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,那么不同的陈列方式有 种.
12. (1)将18个人排成一排,不同的排法有 少种;
(2)将18个人排成两排,每排9人,不同的排法有 种;
(3)将18个人排成三排,每排6人,不同的排法有 种.
13. 5人站成一排,(1)其中甲、乙两人必须相邻,有 种不同的排法;
(2)其中甲、乙两人不能相邻,有 种不同的排法;
(3)其中甲不站排头、乙不站排尾,有 种不同的排法.
14. 5名学生和1名老师照相,老师不能站排头,也不能站排尾,共有 种不同的站法.
15. 4名学生和3名老师排成一排照相,老师不能排两端,且老师必须要排在一起的不同排法有 种.
16. 停车场有7个停车位,现在有4辆车要停放,若要使3个空位连在一起,则停放的方法有 种.
17. 在7名运动员中选出4名组成接力队参加4×100米比赛,那么甲、乙都不跑中间两棒的安排方法有 种.
18. 一个口袋内装有大小相同的7个白球和1个黑球.(1)从口袋内取出3个球,共有 种取法;
(2)从口袋内取出3个球,使其中含有1个黑球,有 种取法;
(3)从口袋内取出3个球,使其中不含黑球,有 种取法.
19. 甲,乙,丙,丁4个足球队举行单循环赛:
(1)共需比赛 场;
(2)冠亚军共有 种可能.
20. 按下列条件,从12人中选出5人,有 种不同选法.
(1)甲、乙、丙三人必须当选;
(2)甲、乙、丙三人不能当选;
(3)甲必须当选,乙、丙不能当选;
(4)甲、乙、丙三人只有一人当选;
(5)甲、乙、丙三人至多2人当选;
(6)甲、乙、丙三人至少1人当选;
21. 某歌舞团有7名演员,其中3名会唱歌,2名会跳舞,2名既会唱歌又会跳舞,现在要从7名演员中选出2人,一人唱歌,一人跳舞,到农村演出,问有 种选法.
22. 从6名男生和4名女生中,选出3名男生和2名女生分别承担A,B,C,D,E五项工作,一共有 种不同的分配方法.
一、选择题(本题共10小题,每小题4分,满分40分)
1、下列运算正确的是( )
A. 4 =±2 B.2-3=-6 C.x2?x3=x6 D.(-2x)4=16×4
2、随着中国综合国力的提升,近年来全球学习汉语的人数不断增加.据报道,2006年海外学习汉语的学生人数已达38 200 000人,用科学记数法表示为( )人(保留3个有效数字)
A.0.382×10 B.3.82×10 C.38.2×10 D.382×10
4、 在元旦游园晚会上有一个闯关活动:将5张分别画有等腰梯形、平行四边形、等腰三角形、圆、菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关,那么一次过关的概率是 ( )
A. B. C. D.
6、 甲、乙、丙三名同学参加风筝比赛,三人放出风筝线长、线与地面夹角如下表(假设风筝线是拉直的,三位同学身高忽略不计),则三人所放的风筝中 ( )
同学 甲 乙 丙
放出风筝线长 100m I00m 90m
线与地面夹角 40° 45° 60°
A .甲的最高 B .丙的最高 C .乙的最低 D .丙的最低
7、国家为九年义务教育期间的学生实行“两免一补”政策,下表是我市
某中学国家免费提供教科书补助的部分情况.
七 八 九 合计
每人免费补助金额(元) 110 90 50
人数(人) 80 300
免费补助总金额(元) 4000 26200
如果要知道空白处的数据,可设七年级的人数为x,八年级的人数为y,
根据题意列出方程组为( )
A. B .
C. D .
8、 有六个等圆按甲、乙、丙三种形式摆放,使相邻两圆相互外切,且
如图所示的连心线分别构成正六边形,平行四边形和正三角形,将圆心
连线外侧的六个扇形(阴影部分)的面积之和依次记为S、P、Q则( )
14、2007年1月1日起,某市全面推行农村合作医疗,农民每年每人只拿
出10元就可以享受合作医疗,住院费报销办法如下表:
住院费(元) 报销率(%)
不超过3000元的部分 15
3000——4000的部分 25
4000——5000的部分 30
5000——10000的部分 35
10000——20000的部分 40
超过20000的部分 45
某人住院费报销了880元,则住院费为__________元.
1、点B在y轴上,位于原点上方,距离坐标原点4单位长度,则此点的坐标为 ;
6、一个正数x的平方根是2a 3与5 a,则a是_________.
7、若x+2y+3z=10,4x+3y+2z=15,则x+y+z的值是_____________.
8、如果25×2=36,那么x的值是______________.
9、已知AD是 ABC的边BC上的中线,AB=15cm,AC=10cm,则 ABD的周长比 ABD的周长大__________.
10、如果三角形的一个外角等于与它相邻的内角的2倍,等于与它不相邻的一个内角的4倍,则此三角形各内角的度数是_______________.
11、已知一个多边形的内角和与外角和共2160°,则这个多边形的边数是___________.
12、将点A先向下平移3个单位,再向右平移2个单位后,则得到点B( 2,5),则点A的坐标为 .
3、在平面直角坐标系中,标出下列个点:
点A在y轴上,位于原点上方,距离原点2个单位长度;
点B在x轴上,位于原点右侧,距离原点1个单位长度;
点C在x轴上,y轴右侧,距离每条两条坐标轴都是2个单位长度;
点D在x轴上,位于原点右侧,距离原点3个单位长度;
点E在x轴上方,y轴右侧,距离x轴2个单位长度,距离y轴4个单位长度。
依次连接这些点,你觉得它像什么图形?(8分)
5、计算正五边形和正十边形的每一个内角度数。(5分)
6、一个多边形的内角和等于1260 ,它是几边形?(5分)
8、按要求解答下列方程(共8分)
(1) x+2y=9 (2) 2x-y=5
3x-2y=-1 3x+4y=2
三、二元一次方程组应用(每题7分,共35分)
1、根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量之比(按瓶计算)为2:5,某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶装个两种各有多少瓶?
2、2台大收割机5台小收割机工作2小时收割小麦3。6公顷,3台大收割机和2抬小收割机5小时收割小麦8公顷,一台大收割机和一台小收割机1小时各收割小麦多少公顷?
3、A市到B市的航线长1200km,一架飞机从A市顺风飞往B市需要2小时30分,从B市逆风飞往A市需要3小时20分,求飞机的平均速度和风速。
4、用白铁皮做罐头盒,每张铁皮可制作盒身25个,或40个盒底,一个盒身与两个盒底配成一套盒。现有36张白铁皮,用多少张制作盒身,多少张制作盒底可以使盒身与盒底正好配套?
二元一次方程组专题专练
专讲一:二元一次方程组
(一)正确理解四个基本概念
1.二元一次方程:
含有两个未知数,并且含有未知数的项的次数都是1的方程叫做二元一次方程.从定义中可以看出:二元一次方程具备以下四个特征:
(1)是方程;(2)有且只有两个未知数;(3)方程是整式方程,即各项都是整式;(4)各项的次数最高为1,例如:像 中, 不是整式,所以 就不是二元一次方程;像x+1=6,x+y-3z=8,不是含有两个未知数,也不是二元一次方程;像xy+6=1中,虽然含有两个未知数x、y且次数都是1,但未知项xy的次数为2,所以也不是二元一次方程,所以二元一次方程必须同时具备以上四点.
2.二元一次方程组
含有两个未知数的两个一次方程所组成的一组方程叫做二元一次方程组,它有两个特点:一是方程组中每一个方程都是一次方程;二是整个方程组中含有两个且只含有两个未知数,如 , , 都是二元一次方程组,但 就不是二元一次方程组.
3.二元一次方程的一个解
适合二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解.
一般地二元一次方程的解有无数个,例如x+y=2中,由于x、y只是受这个方程的约束,并没有被取某一个特定值而制约,因此,二元一次方程有无数个解.
4.二元一次方程组的解
二元一次方程组中各个方程的公共解叫做这个二元一次方程组的解.
定义中的公共解是指同时使二元一次方程组中的每一个方程左右两边的值都相等,而不是使其中一个或部分左右两边的值相等,由于未知数的值必须同时满足每一个方程,所以,二元一次方程组一般情况下只有唯一的一组解,即构成方程组的两个二元一次方程的公共解.
(二)熟练掌握两种基本方法
1.代入消元法
解方程组的基本思路是“消元”——-把“二元”转化为“一元”,其主要步骤是:将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法.其主要步骤可以概括成三句话:
(1)求关系式:用一个未知数的值去代替另一个未知数.
注意:求关系式时,应选取系数比较简单的方程进行变形.
(2)代入消元:将求得的关系式代入到另一个方程,消去其中的一个未知数,并求出另一个未知数的值.
注意:代入消元时,一定将求得的关系式代入另一个方程进行消元.
(3)回代得解:将求得的这个未知数的值代入关系式中,求出另一个未知数的值,最后写成方程解的形式.
回代得解时,应将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值,并写成方程解的形式,最后还要下结论.
2.加减消元法
通过两式相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法.其主要步骤也可以概括成三句话:
(1)变换系数:将某一未知数的系数变成相等或互为相反数.
注意:变换系数时,要选取系数较为简单的未知数作为消元对象,不要漏乘方程中的某一项,特别是常数项!
(2)加减消元:就是将变形后的方程与另一个方程相加或相减,消去一个未知数.
注意:加减消元时,要将方程组中相同未知数上下对齐,以便观察是用加法还是用减法消元,并注意计算中容易错的地方,特别是符号!
(3)回代得解:
注意:回代得解时,可将求出的未知数的值回代到原来方程组中任意一个方程,从而求出另一个未知数的值,最后要写成解的形式!
总之,代入法和加减法都是解二元一次方程组最基本最常见的方法,在解方程组时,如果题目无具体要求,可选用任何一种方法,至于选择哪种方法,一定要先对系数进行认真观察分析,根据系数的具体特点,选择较为简便的方法.
(三)密切关注两种基本思想
1.消元思想:同学们在学会了代入法和加减法解二元一次方程组,首先要搞清解方程组的基本思想就是:“消元”,它的基本模式就是:二元一次方程组 一元一次方程,它的基本方法就是:代入法和加减法.通过代入或加减达到将
“二元”转化为“一元”的目的.
2.转化思想:解二元一次方程组的实质是通过消元将二元转化为一元,在这种“消元”中,渗透了化“未知”为“已知”的重要的转化思想方法.列二元一次方程组解决实际问题的实质是将实际问题转化为数学问题.
转化是一种重要的思想方法,在解题中主要体会这种思想方法的灵活应用.
(三)题型类析
专练一:
1.(06德州)已知方程组 的解为 ,则 的值为_____________.
2.(06南昌) 一副三角扳按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°∠2=y°,则可得到方程组为( )
A B C D
3.
专讲二:二元一次方程组的应用
(一)二元一次方程组的应用问题
1.列二元一次方程组的应用题的一般步骤
(1)审:弄清题意和题目中的数量关系;
(2)设:用字母表示题目中的一个未知数;
(3)找:找出能够表示应用题全部含义的一个相等关系;
(4)列:根据这个相等关系列出重要的代数式,从而列出方程;
(5)解:解这个所列出的方程;
(6)验:检验根是否符合实际情况;
(7)答:写出答案.
可以简记为:“审、设、找、列、解、验、答”七个字,请同学们要牢记.
2.注意实际问题中的基本数量关系及关键词
常用的数量关系有:(1)距离=速度×时间;(2)工作量=工作效率×工作时间;(3)商品的销售额=商品销售价×商品销售量;(4)商品的总销售利润=(销售价-成本价)×销售量;(5)商品售价=标价×折数(6)商品的利润率= ×100℅等等.
还要正确理解一些关键词表达的同类量之间的特殊的等量关系,如:“提前”、“超过”、“早到”、“迟到”、“几倍”、“增加了”、“相向而行”、“同向而行”等等.
3.列二元一次方程组的应用题常用策略
(1)“直接”与“间接转换:当直接设未知数不便时,转而设间接未知数来求解,反之亦然.
(2)“一元”与“多元”转换:当设一个未知数有困难时,可考虑设多个未知数求解,反之亦然.
(3)“部分”与“整体”转换:当整体设元有困难时,就考虑设其部分,反之亦然,如:数字问题.
(4)“一般”与“特殊”转换:当从一般情形入手困难时,就着眼于特殊情况,反之亦然.
(5)“文字”与“图表”转换:有的应用题,用文字语言表达较难,就可以用表格或图形来分析,这样既直观,也易理解题意.
1) 66x+17y=3967
25x+y=1200
答案:x=48 y=47
(2) 18x+23y=2303
74x-y=1998
答案:x=27 y=79
(3) 44x+90y=7796
44x+y=3476
答案:x=79 y=48
(4) 76x-66y=4082
30x-y=2940
答案:x=98 y=51
(5) 67x+54y=8546
71x-y=5680
答案:x=80 y=59
(6) 42x-95y=-1410
21x-y=1575
答案:x=75 y=48
(7) 47x-40y=853
34x-y=2006
答案:x=59 y=48
(8) 19x-32y=-1786
75x+y=4950
答案:x=66 y=95
(9) 97x+24y=7202
58x-y=2900
答案:x=50 y=98
(10) 42x+85y=6362
63x-y=1638
答案:x=26 y=62
(11) 85x-92y=-2518
27x-y=486
答案:x=18 y=44
(12) 79x+40y=2419
56x-y=1176
答案:x=21 y=19
(13) 80x-87y=2156
22x-y=880
答案:x=40 y=12
(14) 32x+62y=5134
57x+y=2850
答案:x=50 y=57
(15) 83x-49y=82
59x+y=2183
答案:x=37 y=61
(16) 91x+70y=5845
95x-y=4275
答案:x=45 y=25
(17) 29x+44y=5281
88x-y=3608
答案:x=41 y=93
(18) 25x-95y=-4355
40x-y=2000
答案:x=50 y=59
(19) 54x+68y=3284
78x+y=1404
答案:x=18 y=34
(20) 70x+13y=3520
52x+y=2132
答案:x=41 y=50
(21) 48x-54y=-3186
24x+y=1080
答案:x=45 y=99
(22) 36x+77y=7619
47x-y=799
答案:x=17 y=91
(23) 13x-42y=-2717
31x-y=1333
答案:x=43 y=78
(24) 28x+28y=3332
52x-y=4628
答案:x=89 y=30
(25) 62x-98y=-2564
46x-y=2024
答案:x=44 y=54
(26) 79x-76y=-4388
26x-y=832
答案:x=32 y=91
(27) 63x-40y=-821
42x-y=546
答案:x=13 y=41
(28) 69x-96y=-1209
42x+y=3822
答案:x=91 y=78
(29) 85x+67y=7338
11x+y=308
答案:x=28 y=74
(30) 78x+74y=12928
14x+y=1218
答案:x=87 y=83
(31) 39x+42y=5331
59x-y=5841
答案:x=99 y=35
(32) 29x+18y=1916
58x+y=2320
答案:x=40 y=42
(33) 40x+31y=6043
45x-y=3555
答案:x=79 y=93
(34) 47x+50y=8598
45x+y=3780
答案:x=84 y=93
(35) 45x-30y=-1455
29x-y=725
答案:x=25 y=86
(36) 11x-43y=-1361
47x+y=799
答案:x=17 y=36
(37) 33x+59y=3254
94x+y=1034
答案:x=11 y=49
(38) 89x-74y=-2735
68x+y=1020
答案:x=15 y=55
(39) 94x+71y=7517
78x+y=3822
答案:x=49 y=41
(40) 28x-62y=-4934
46x+y=552
答案:x=12 y=85
(41) 75x+43y=8472
17x-y=1394
答案:x=82 y=54
(42) 41x-38y=-1180
29x+y=1450
答案:x=50 y=85
(43) 22x-59y=824
63x+y=4725
答案:x=75 y=14
(44) 95x-56y=-401
90x+y=1530
答案:x=17 y=36
(45) 93x-52y=-852
29x+y=464
答案:x=16 y=45
(46) 93x+12y=8823
54x+y=4914
答案:x=91 y=30
(47) 21x-63y=84
20x+y=1880
答案:x=94 y=30
(48) 48x+93y=9756
38x-y=950
答案:x=25 y=92
(49) 99x-67y=4011
75x-y=5475
答案:x=73 y=48
(50) 83x+64y=9291
90x-y=3690
答案:x=41 y=92
(51) 17x+62y=3216
75x-y=7350
答案:x=98 y=25
(52) 77x+67y=2739
14x-y=364
答案:x=26 y=11
(53) 20x-68y=-4596
14x-y=924
答案:x=66 y=87
(54) 23x+87y=4110
83x-y=5727
答案:x=69 y=29
(55) 22x-38y=804
86x+y=6708
答案:x=78 y=24
(56) 20x-45y=-3520
56x+y=728
答案:x=13 y=84
(57) 46x+37y=7085
61x-y=4636
答案:x=76 y=97
(58) 17x+61y=4088
71x+y=5609
答案:x=79 y=45
(59) 51x-61y=-1907
89x-y=2314
答案:x=26 y=53
(60) 69x-98y=-2404
21x+y=1386
答案:x=66 y=71
(61) 15x-41y=754
74x-y=6956
答案:x=94 y=16
(62) 78x-55y=656
89x+y=5518
答案:x=62 y=76
(63) 29x+21y=1633
31x-y=713
答案:x=23 y=46
(64) 58x-28y=2724
35x+y=3080
答案:x=88 y=85
(65) 28x-63y=-2254
88x-y=2024
答案:x=23 y=46
(66) 43x+50y=7064
85x+y=8330
答案:x=98 y=57
(67) 58x-77y=1170
38x-y=2280
答案:x=60 y=30
(68) 92x+83y=11586
43x+y=3010
答案:x=70 y=62
(69) 99x+82y=6055
52x-y=1716
答案:x=33 y=34
(70) 15x+26y=1729
94x+y=8554
答案:x=91 y=14
(71) 64x+32y=3552
56x-y=2296
答案:x=41 y=29
(72) 94x+66y=10524
84x-y=7812
答案:x=93 y=27
(73) 65x-79y=-5815
89x+y=2314
答案:x=26 y=95
(74) 96x+54y=6216
63x-y=1953
答案:x=31 y=60
(75) 60x-44y=-352
33x-y=1452
答案:x=44 y=68
(76) 79x-45y=510
14x-y=840
答案:x=60 y=94
(77) 29x-35y=-218
59x-y=4897
答案:x=83 y=75
(78) 33x-24y=1905
30x+y=2670
答案:x=89 y=43
(79) 61x+94y=11800
93x+y=5952
答案:x=64 y=84
(80) 61x+90y=5001
48x+y=2448
答案:x=51 y=21
(81) 93x-19y=2
86x-y=1548
答案:x=18 y=88
(82) 19x-96y=-5910
30x-y=2340
答案:x=78 y=77
(83) 80x+74y=8088
96x-y=8640
答案:x=90 y=12
(84) 53x-94y=1946
45x+y=2610
答案:x=58 y=12
(85) 93x+12y=9117
28x-y=2492
答案:x=89 y=70
(86) 66x-71y=-1673
99x-y=7821
答案:x=79 y=97
(87) 43x-52y=-1742
76x+y=1976
答案:x=26 y=55
(88) 70x+35y=8295
40x+y=2920
答案:x=73 y=91
(89) 43x+82y=4757
11x+y=231
答案:x=21 y=47
(90) 12x-19y=236
95x-y=7885
答案:x=83 y=40
(91) 51x+99y=8031
71x-y=2911
答案:x=41 y=60
(92) 37x+74y=4403
69x-y=6003
答案:x=87 y=16
(93) 46x+34y=4820
71x-y=5183
答案:x=73 y=43
(94) 47x+98y=5861
55x-y=4565
答案:x=83 y=20
(95) 30x-17y=239
28x+y=1064
答案:x=38 y=53
(96) 55x-12y=4112
79x-y=7268
答案:x=92 y=79
(97) 27x-24y=-450
67x-y=3886
答案:x=58 y=84
(98) 97x+23y=8119
14x+y=966
答案:x=69 y=62
(99) 84x+53y=11275
70x+y=6790
答案:x=97 y=59
(100) 51x-97y=297
19x-y=1520
答案:x=80 y=39
关于初升高数学考试卷子和初三升高中数学试卷的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
2013-2021 今昔职教网, All Rights Reserved. | 本网站内容由网络整理发布,如权利人发现存在误传其作品情形,请及时与本站联系。联系邮箱:893967426@qq.com
公司地址:河南省郑州市 | 广告投放:893967426@qq.com(张老师) |合作加盟:893967426@qq.com(张老师)